346
Biology and Biotechnology of Environmental Stress Tolerance in Plants, Volume 3
Tang, X., Liu, G., Zhou, J., Ren, Q., You, Q., Tian, L., Xin, X., et al., (2018). A large-scale
whole-genome sequencing analysis reveals highly specific genome editing by both Cas9
and Cpf1 (Cas12a) nucleases in rice. Genome Biol., 19, 84.
Tang, X., Lowder, L. G., Zhang, T., Malzahn, A. A., Zheng, X., Voytas, D. F., Zhong, Z., et al.,
(2017). A CRISPR-Cpf1 system for efficient genome editing and transcriptional repression
in plants. Nat. Plants, 3, 17103. https:// doi.org/10.1038/nplan ts.2017.18.
Tashkandi, M., Ali, Z., Aljedaani, F., Shami, A., & Mahfouz, M., (2018). Engineering
resistance against tomato yellow leaf curl virus via the CRISPR/Cas9 system in tomato.
Plant Signal. Behav., 13, e1525996.
Tripathi, J. N., Ntui, V. O., Ron, M., Muiruri, S. K., Britt, A., & Tripathi, L., (2019). CRISPR/
Cas9 editing of endogenous banana streak virus in the B genome of Musa spp. overcomes a
major challenge in banana breeding. Commun Biol., 2, 46. doi: 10.1038/s42003-019-0288-7.
Uga, Y., Okuno, K., & Yano, M., (2011). Dro1, a major QTL involved in deep rooting of rice
under upland field conditions. Journal of Experimental Botany, 62(8), 2485–2494. doi:
10.1093/jxb/erq429.
Uga, Y., Sugimoto, K., Ogawa, S., Rane, J., Ishitani, M., Hara, N., Kitomi, Y., et al., (2013).
Control of root system architecture by DEEPER ROOTING 1 increases rice yield under
drought conditions. Nature Genetics, 45(9), 1097–1102. doi: 10.1038/ ng.2725.
Voytas, D. F., & Gao, C., (2014). Precision genome engineering and agriculture: Opportunities
and regulatory challenges. PLoS Biol., 12, e1001877. https://doi.org/10.1371/journ
al.pbio.10018 77.
Vu, T. V., Sivankalyani, V., Kim, E. J., Doan, D. T. H., Tran, M. T., Kim, J., Sung, Y. W.,
et al., (2020). Highly efficient homology-directed repair using CRISPR/Cpf1-geminiviral
replicon in tomato. Plant Biotechnol. J., 1–11. doi: 10.1111/pbi.13373.
Wang, F. Z., Chen, M. X., Yu, L. J., Xie, L. J., Yuan, L. B., Qi, H., Xiao, M., Guo, W.,
Chen, Z., Yi, K., et al., (2017). Osarm1, an R2R3 MYB transcription factor, is involved in
regulation of the response to arsenic stress in rice. Frontiers in Plant Science, 8, 1868. doi:
10.3389/fpls.2017.01868.
Wang, F., Wang, C., Liu, P., Lei, C., Hao, W., Gao, Y., et al., (2016). Enhanced rice blast
resistance by CRISPR/Cas9-targeted mutagenesis of the ERF transcription factor gene
OsERF922. PLoS One, 11, e0154027.
Wang, L., Chen, L., Li, R., Zhao, R., Yang, M., Sheng, J., & Shen, L., (2017a). Reduced
drought tolerance by CRISPR/Cas9-mediated SlMAPK3 mutagenesis in tomato plants. J.
Agric. Food Chem., 65, 8674–8682. https://doi.org/10.1021/acs.jafc.7b027 45.
Wang, L., Chen, L., Li, R., Zhao, R., Yang, M., Sheng, J., & Shen, L., (2017b). Reduced
drought tolerance by CRISPR/ Cas9-mediated SlMAPK3 mutagenesis in tomato plants.
Journal of Agricultural and Food Chemistry, 65(39), 8674–8682. doi: 10.1021/acs.
jafc.7b02745.
Wang, X., Tu, M., Wang, D., Liu, J., Li, Y., Li, Z., Wang, Y., & Wang, X., (2018). CRISPR/
Cas9-mediated efficient targeted mutagenesis in grape in the first generation. Plant
Biotechnol. J., 16, 844–855.
Wang, Y., Cheng, X., Shan, Q., Zhang, Y., Liu, J., Gao, C., & Qiu, J. L., (2014). Simultaneous
editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to
powdery mildew. Nature Biotechnology, 32, 947–951. doi: 10.1038/nbt.2969.
Wrighton, K., (2018). Expanding the reach of Cas9. Nat. Rev. Genet., 19, 250, 251. https://
doi.org/10.1038/nrg.2018.15.