346

Biology and Biotechnology of Environmental Stress Tolerance in Plants, Volume 3

Tang, X., Liu, G., Zhou, J., Ren, Q., You, Q., Tian, L., Xin, X., et al., (2018). A large-scale

whole-genome sequencing analysis reveals highly specific genome editing by both Cas9

and Cpf1 (Cas12a) nucleases in rice. Genome Biol., 19, 84.

Tang, X., Lowder, L. G., Zhang, T., Malzahn, A. A., Zheng, X., Voytas, D. F., Zhong, Z., et al.,

(2017). A CRISPR-Cpf1 system for efficient genome editing and transcriptional repression

in plants. Nat. Plants, 3, 17103. https:// doi.org/10.1038/nplan ts.2017.18.

Tashkandi, M., Ali, Z., Aljedaani, F., Shami, A., & Mahfouz, M., (2018). Engineering

resistance against tomato yellow leaf curl virus via the CRISPR/Cas9 system in tomato.

Plant Signal. Behav., 13, e1525996.

Tripathi, J. N., Ntui, V. O., Ron, M., Muiruri, S. K., Britt, A., & Tripathi, L., (2019). CRISPR/

Cas9 editing of endogenous banana streak virus in the B genome of Musa spp. overcomes a

major challenge in banana breeding. Commun Biol., 2, 46. doi: 10.1038/s42003-019-0288-7.

Uga, Y., Okuno, K., & Yano, M., (2011). Dro1, a major QTL involved in deep rooting of rice

under upland field conditions. Journal of Experimental Botany, 62(8), 2485–2494. doi:

10.1093/jxb/erq429.

Uga, Y., Sugimoto, K., Ogawa, S., Rane, J., Ishitani, M., Hara, N., Kitomi, Y., et al., (2013).

Control of root system architecture by DEEPER ROOTING 1 increases rice yield under

drought conditions. Nature Genetics, 45(9), 1097–1102. doi: 10.1038/ ng.2725.

Voytas, D. F., & Gao, C., (2014). Precision genome engineering and agriculture: Opportunities

and regulatory challenges. PLoS Biol., 12, e1001877. https://doi.org/10.1371/journ

al.pbio.10018 77.

Vu, T. V., Sivankalyani, V., Kim, E. J., Doan, D. T. H., Tran, M. T., Kim, J., Sung, Y. W.,

et al., (2020). Highly efficient homology-directed repair using CRISPR/Cpf1-geminiviral

replicon in tomato. Plant Biotechnol. J., 1–11. doi: 10.1111/pbi.13373.

Wang, F. Z., Chen, M. X., Yu, L. J., Xie, L. J., Yuan, L. B., Qi, H., Xiao, M., Guo, W.,

Chen, Z., Yi, K., et al., (2017). Osarm1, an R2R3 MYB transcription factor, is involved in

regulation of the response to arsenic stress in rice. Frontiers in Plant Science, 8, 1868. doi:

10.3389/fpls.2017.01868.

Wang, F., Wang, C., Liu, P., Lei, C., Hao, W., Gao, Y., et al., (2016). Enhanced rice blast

resistance by CRISPR/Cas9-targeted mutagenesis of the ERF transcription factor gene

OsERF922. PLoS One, 11, e0154027.

Wang, L., Chen, L., Li, R., Zhao, R., Yang, M., Sheng, J., & Shen, L., (2017a). Reduced

drought tolerance by CRISPR/Cas9-mediated SlMAPK3 mutagenesis in tomato plants. J.

Agric. Food Chem., 65, 8674–8682. https://doi.org/10.1021/acs.jafc.7b027 45.

Wang, L., Chen, L., Li, R., Zhao, R., Yang, M., Sheng, J., & Shen, L., (2017b). Reduced

drought tolerance by CRISPR/ Cas9-mediated SlMAPK3 mutagenesis in tomato plants.

Journal of Agricultural and Food Chemistry, 65(39), 8674–8682. doi: 10.1021/acs.

jafc.7b02745.

Wang, X., Tu, M., Wang, D., Liu, J., Li, Y., Li, Z., Wang, Y., & Wang, X., (2018). CRISPR/

Cas9-mediated efficient targeted mutagenesis in grape in the first generation. Plant

Biotechnol. J., 16, 844–855.

Wang, Y., Cheng, X., Shan, Q., Zhang, Y., Liu, J., Gao, C., & Qiu, J. L., (2014). Simultaneous

editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to

powdery mildew. Nature Biotechnology, 32, 947–951. doi: 10.1038/nbt.2969.

Wrighton, K., (2018). Expanding the reach of Cas9. Nat. Rev. Genet., 19, 250, 251. https://

doi.org/10.1038/nrg.2018.15.